Un gruppo di ricercatori presso la Delft University of Technology hanno scoperto la superconduttività unidirezionale senza campi magnetici, qualcosa che si pensava fosse impossibile fino ad oggi. La scoperta, utilizza materiali quantistici 2D e apre la strada all’informatica superconduttiva. I superconduttori possono rendere l’elettronica centinaia di volte più veloce, il tutto senza perdite di energia.
I vantaggi di questa applicazione all’elettronica sono molteplici. Quest’ultima può diventare cento volte più veloce e inserire i superconduttori nella nostra vita quotidiana, renderebbe il tutto molto più ecologico. L’uso di superconduttori invece dei normali semiconduttori potrebbe far risparmiare fino al 10% di tutte le riserve energetiche occidentali. Ciò finora era qualcosa di impossibile, in quanto nessuno era in grado di dirigere gli elettroni dei superconduttori in una singola condizione, una proprietà fondamentale per l’informatica e l’elettronica moderna.
In conduzione normale gli elettroni volano come particelle separate; nei superconduttori si muovono a coppie, senza alcuna perdita di energia elettrica. Negli anni ’70, gli scienziati dell’IBM hanno sperimentato l’idea dell’informatica superconduttiva, ma hanno dovuto interrompere i loro sforzi. I superconduttori non hanno mai avuto un analogo di questa idea unidirezionale senza campo magnetico; poiché sono più legati ai metalli che ai semiconduttori, che conducono sempre in entrambe le direzioni e non hanno alcun potenziale incorporato. Come si è riusciti a fare ciò che per anni era ritenuto impossibile?
I ricercatori hanno sostituito il classico materiale barriera nei JJ con una barriera di materiale quantistico, in cui le proprietà intrinseche del materiale quantistico possono modulare l’accoppiamento tra i due superconduttori in modi nuovi. Molte tecnologie si basano su vecchie versioni dei superconduttori JJ, ad esempio la tecnologia MRI. Inoltre, l’informatica quantistica oggi si basa su questo. La tecnologia che in precedenza era possibile solo utilizzando semiconduttori ora può essere potenzialmente realizzata con superconduttori utilizzando questo elemento costitutivo.
La prima direzione di ricerca che dobbiamo affrontare per l’applicazione commerciale è l’aumento della temperatura di esercizio. Qui abbiamo utilizzato un superconduttore molto semplice che limitava la temperatura di esercizio. La seconda cosa da affrontare è il ridimensionamento della produzione. Anche se è fantastico dimostrare che funziona nei nanodispositivi, i ricercatori ne hanno realizzati solo una manciata. Il prossimo passo sarà studiare come scalare la produzione a milioni di diodi Josephson su un chip.
Foto di Pete Linforth da Pixabay
WhatsApp porta in campo una nuova funzione per gli aggiornamenti di stato. Dopo l'aggiunta delle menzioni per i singoli contatti,…
La dopamina, spesso associata al piacere e alla ricompensa, svolge un ruolo chiave non solo nel cervello, ma anche nella…
Beyerdynamic ha portato il suo rinomato approccio ingegneristico da studio nel mondo wireless con le Aventho 300, delle cuffie over-ear…
Il mondo della scienza ha raggiunto un traguardo rivoluzionario con lo sviluppo del primo occhio bionico capace di ripristinare la…
Le nostre scelte d'acquisto non sono mai completamente razionali. Dietro ogni decisione di acquisto, infatti, si nasconde un complesso intreccio…
Synology è azienda conosciuta in tutto il mondo per la produzione di dispositivi legati al segmento NAS, di cui vi abbiamo ampiamente…