News

Creato il primo pesce bioibrido nato da cellule cardiache umane

Un team di ricercatori dell’Università di Harvard, in collaborazione con alcuni colleghi della Emory University, hanno sviluppato il primo pesce bioibrido completamente autonomo. Questo minuscolo pesciolino ibrido prende vita da alcune cellule muscolari cardiache derivate da cellule staminali umane.

 

Dalle caratteristiche biofisiche del cuore umano ad un pesce artificiale

Il pesce bioibrido creato in laboratorio è in grado di nuotare in modo del tutto autonomo e il suo movimento ricrea le contrazioni del muscolo cardiaco. Questo aspetto potrebbe avvicinare i ricercatori al loro obiettivo finale, ovvero quello di creare una pompa muscolare artificiale che possa curare e risolvere problemi cardiaci come l’aritmia.

Come spiega infatti Kit Parker, professore di bioingegneria e fisica applicata presso la Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) e autore senior del documento, lo scopo ultimo delle loro ricerche è proprio quello di riuscire a creare in laboratorio, un cuore artificiale che possa sostituire un cuore malformato o danneggiato.

Parker afferma anche che, a differenza di quanto fatto fino ad ora in altri studi che si concentrano sull’imaging cardiaco come modello, il suo team si sta concentrando sull’individuazione dei principi biofisici chiave che fanno funzionare il cuore. E proprio questi meccanismi biofisici sono alla base dei loro progetti e sono stati replicati in “un sistema, un pesce vivente che nuota”.

 

Un pesce bioibrido che nuota muovendosi come il cuore

Il pesce bioibrido rappresenta il primo dispositivo bioibrido autonomo a base di cardiomiociti derivati da cellule staminali umane. La sua forma ed il suo movimento si ispirano a quelli di un pesce zebra.

Questo pesce zebra bioibrido presenta due strati di cellule muscolari, uno su ciascun lato della pinna caudale. Quando il muscolo da un lato si contrae, quello dall’altro lato si allunga, e questo avviene grazie ad un sistema a circuito chiuso in cui l’allungamento muscolare innesca l’apertura di un canale proteico meccanosensibile, che provoca una contrazione, la quale a sua volta innesca l’allungamento. Questo meccanismo è in gradi di spingere il pesce per più di 100 giorni.

Secondo Keel Yong Lee, borsista post-dottorato presso SEAS e co-autore prinicpale dello studio, questo sistema a circuito chiuso e i risultati ottenuti nello studio, “evidenziano il ruolo dei meccanismi di feedback nelle pompe muscolari come il cuore”.

I ricercatori inoltre hanno anche progettato un nodo di stimolazione autonomo, simile ad un pacemaker, che controlla la frequenza e il ritmo delle contrazioni spontanee del pesce bioibrido. Il sistema combinato tra la muscolatura del pesce ed il nodo di stimolazione autonomo hanno consentito al pesce di compiere movimenti della pinna avanti e indietro, che sono inoltre continui, spontanei e coordinati.

 

La strada verso un cuore artificiale

Come afferma Sung-Jin Park, ex borsista post-dottorato presso il SEAS e attualmente assistente professore presso il Dipartimento di ingegneria biomedica del Georgia Institute of Technology e la Emory University School of Medicine e co-autore autore principale dello studio, “questa nuova ricerca fornisce un modello per studiare la segnalazione meccano-elettrica come obiettivo terapeutico della gestione del ritmo cardiaco e per comprendere la fisiopatologia nelle disfunzioni del nodo senoatriale e nell’aritmia cardiaca”.

Ora il passo successivo del team di ricerca sarà quello di costruire dispositivi bioibridi ancora più complessi, partendo da cellule cardiache umane. La difficile sfida del team di ricerca sarà dunque quella di riuscire un giorno a creare qualcosa di estremamente complesso e sofisticato come un cuore umano.

Riferimento: “Un pesce bioibrido che nuota autonomamente progettato con la biofisica cardiaca umana” di Keel Yong Lee, Sung-Jin Park, David G. Matthews, Sean L. Kim, Carlos Antonio Marquez, John F. Zimmerman, Herdeline Ann M. Ardoña, Andre G. Kleber, George V. Lauder e Kevin Kit Parker, 10 febbraio 2022, Scienza.
DOI: 10.1126/science.abh0474

Ph. Credit: Keel Yong Lee, PhD, Postdoctoral fellow, Disease Biophysics Group, Harvard University (via Twitter)

Valeria Magliani

Instancabile giramondo, appassionata di viaggi, di scoperte e di scienza, ho iniziato l'attività di web-writer perché desideravo essere parte di quel meccanismo che diffonde curiosità e conoscenza. Dobbiamo conoscere, sapere, scoprire e viaggiare, il più possibile. Avremo così una vita migliore, in un mondo migliore.

Recent Posts

Recensione Blasphemous 2: Mea Culpa – il DLC che completa la storia

Blasphemous 2 è stato indiscutibilmente uno dei titoli più discussi ed apprezzati dell'intero panorama videoludico degli ultimi anni, un gioco capace…

12 Novembre 2024

MacBook Air OLED non arriverà prima del 2028

Brutte notizie per chi sperava in un lancio "imminente" dei MacBook Air con display OLED. Stando ad un recente report…

12 Novembre 2024

Le nanoplastiche possono indebolire l’efficacia degli antibiotici

Un nuovo studio rivela che le nanoplastiche, minuscole particelle di plastica di dimensioni inferiori a 0,001 millimetri, possono compromettere la…

12 Novembre 2024

Il ruolo protettivo della madre nel prevenire il PTSD nei bambini

Il ruolo della madre nel proteggere il bambino dal Disturbo da Stress Post-Traumatico (PTSD) è di fondamentale importanza. Diversi studi…

11 Novembre 2024

Macchie verdi su Marte: una scoperta inaspettata del rover Perseverance

Il rover Perseverance della NASA ha individuato insolite macchie verdi su alcune rocce marziane, suggerendo che possano essere state in…

11 Novembre 2024

Perché alcuni di noi restano sedentari? la risposta è nei tratti della personalità

È ormai noto che l'attività fisica e lo stile di vita sedentario non dipendono solo da fattori ambientali, come la…

11 Novembre 2024