Manipolare il flusso di elettroni porterà ad un’elettronica più sostenibile

Date:

Share post:

I ricercatori della Norwegian University of Science and Technology (NTNU) hanno trovato un metodo completamente nuovo per controllare le proprietà elettroniche dei materiali di ossido. Questo apre la porta a componenti ancora più piccoli e forse a un’elettronica più sostenibile. “Abbiamo trovato un modo completamente nuovo per controllare la conduttività dei materiali su scala nanometrica”, afferma il professor Dennis Meier del Dipartimento di scienza e ingegneria dei materiali di NTNU.

Uno degli aspetti migliori del nuovo metodo è che non interferisce con altre proprietà del materiale, come facevano i metodi precedenti. Ciò rende possibile combinare diverse funzioni nello stesso materiale, che è un importante passo avanti per la tecnologia su scala nanometrica.

“La cosa veramente fantastica è che questo progetto è gestito da NTNU e coinvolge persone di diversi dipartimenti. Beneficiamo anche di strutture chiave come il NanoLab e il TEM (microscopia elettronica a trasmissione) Gemini Center. Questo approccio interdisciplinare mostra cosa possiamo fare quando lavorare insieme”, dice Meier. Un nuovo articolo sulla rivista Nature Materials affronta i risultati. L’articolo ha attirato l’attenzione internazionale ancor prima di essere stampato. Le possibilità offerte dalla scoperta sono state discusse nel numero di agosto di Nature Materials dai massimi esperti del settore.

 

Grandi progressi per i gadget elettronici del futuro

Raramente pensiamo alla tecnologia che sta dietro l’accensione di una lampadina o al nostro utilizzo di elettrodomestici. Il controllo delle particelle cariche su scala minuto fa semplicemente parte della vita quotidiana. Ma su una nanoscala molto più piccola, gli scienziati sono ora regolarmente in grado di manipolare il flusso di elettroni. Ciò apre possibilità per componenti ancora più piccoli in computer e telefoni cellulari che utilizzano a malapena l’elettricità.

Tuttavia rimane un problema di fondo. È possibile simulare componenti elettronici su scala nanometrica, ma alcuni dei concetti più promettenti sembrano escludersi a vicenda. Ciò significa che non è possibile combinare più componenti per creare una rete. “L’utilizzo di fenomeni quantistici richiede estrema precisione per mantenere il giusto rapporto tra le diverse sostanze nel materiale mentre si modifica la struttura chimica del materiale, che è necessario se si desidera creare sinapsi artificiali per simulare le proprietà delle vie nervose così come le conosciamo dalla biologia,” ha riferito Meier.

Gli sforzi interdipartimentali collaborativi, guidati dal professor Meier, sono riusciti ad aggirare alcuni di questi problemi sviluppando un nuovo approccio. “Il nuovo approccio si basa sullo sfruttamento delle irregolarità” nascoste “a livello atomico, i cosiddetti difetti anti-Frenkel”, afferma Meier. I ricercatori sono riusciti a creare essi stessi tali difetti, consentendo così a un materiale isolante di diventare elettricamente conduttivo.

elettronica sostenibile

Un’elettronica più sostenibile per un futuro più rispettoso dell’ambiente

I difetti del materiale sono legati alle sue varie proprietà. Tuttavia, i difetti anti-Frenkel possono essere manipolati in modo tale che i cambiamenti nella conducibilità non influenzino la struttura effettiva del materiale o cambino le sue altre proprietà, come il magnetismo e la ferroelettricità. “Il mantenimento dell’integrità strutturale rende possibile la progettazione di dispositivi multifunzionali utilizzando lo stesso materiale. Questo è un grande passo verso una nuova tecnologia su scala nanometrica”, afferma Meier.

Un altro vantaggio del nuovo approccio è che i ricercatori possono cancellare i componenti su nanoscala utilizzando un semplice trattamento termico. Quindi puoi modificare o aggiornare i componenti nel materiale in seguito. “Forse saremo in grado di utilizzare i nostri gadget elettronici più a lungo invece di riciclarli o gettarli via. Possiamo semplicemente aggiornarli. Questo è fondamentalmente molto più rispettoso dell’ambiente”, dice Meier.

La pianificazione è già in corso per ulteriori tentativi di combinare diversi componenti. Il lavoro è sostenuto dall’European Research Council attraverso un ERC Consolidator Grant che Meier ha ricevuto lo scorso anno. È coinvolto anche il rinomato Center for Quantum Spintronics (QuSpin). L’obiettivo è utilizzare sia la carica che lo spin negli elettroni per darci un futuro più rispettoso dell’ambiente.

Marco Inchingoli
Marco Inchingoli
Nato a Roma nel 1989, Marco Inchingoli ha sempre nutrito una forte passione per la scrittura. Da racconti fantasiosi su quaderni stropicciati ad articoli su riviste cartacee spinge Marco a perseguire un percorso da giornalista. Dai videogiochi - sua grande passione - al cinema, gli argomenti sono molteplici, fino all'arrivo su FocusTech dove ora scrive un po' di tutto.

Related articles

Depressione negli adolescenti: il legame tra risposta di ricompensa attenuata e debolezza emotiva

La depressione è un disturbo complesso che coinvolge fattori biologici, psicologici e sociali. Negli ultimi anni, la ricerca...

Misteriose luci sopra il cielo del Portogallo: un fenomeno ancora senza spiegazione

Nelle notti intorno al 9 dicembre, strane luci sono apparse nel cielo portoghese, suscitando perplessità tra residenti ed...

Dislessia e genetica: i cambiamenti cerebrali che influenzano linguaggio, visione e movimento

La dislessia è un disturbo specifico dell'apprendimento che colpisce milioni di persone in tutto il mondo. Nonostante la...

United Airlines adotta AirTag per il tracciamento bagagli: una collaborazione pionieristica con Apple

United Airlines è diventata la prima grande compagnia aerea a integrare la tecnologia AirTag di Apple per il...